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Introduction
The potential of coherent diffractive imaging has in recent years become 
well recognised.  In this technique an essentially parallel beam of coher-
ent x-rays illuminates a support region containing an unknown sample. 
Outside that region the wavefield is known - typically the sample is iso-
lated so that outside the support there is no scattering. When the diffrac-
tion pattern is measured with sufficient signal to noise ratio an iterative 
technique can be used to solve for the transmission funcion of the 
sample. The technique offers extremely high resolution reconstructions of 
a sample.
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The iterative proce-
dure can be thought 
of [1] as the repeated 
operation of: 1. a 
support operator,       , 
which acts on the 
current iterate, for in-
stance by leaving 
values within the support region unchanged and setting values out-
side to zero; and 2.  a Fourier modulus operator,          , which fourier 
transforms the iterate as updated by the support information, sets the 
measured amplitude and inverse Fourier transfoms the result back to 
obtain the next iterate. 
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Low Frequency Starting Estimate
The diffraction pattern resulting from curved beam illu-
mination is different to that arising from plane wave illu-
mination. In the far field there will be a region corre-
sponding to the numerical aperture of the focusing 
optic. Within this region the diffraction from the sample 
will interfere with the defocused beam from the optic 
producing an in-line hologram of the sample. This can 
be inverted to produce a low-resolution (limited to the 
resolution of the optic) estimate of the sample. This esti-
mate can be used to provide a compact support region 

Maximal beam curvature is obtained at the Raleigh point. The resulting diffrac-
tion pattern is holographic within the expanding beam diameter and is com-
prised of scattered signal from the sample outside this region. Data from a micro-
fabricated gold numeral “50” which has been contrast enhanced in three regions 
is shown. From the central holographic region a reconstruction of the sample is 
shown. Part of the sample has been obscured by the zone plate beam stop.

Curved Beam Illumination
Here we consider the effect of illuminating the sample with a beam that has significant curvature over the width of the sample. This can be achieved by 
using a focusing optic such as a zone plate and positioning the sample a short distance from the focal point. We describe the following results [1,2,3]:

   Low Frequency Starting Estimate    Faster Convergence
   No Support Convergence        Large and Periodic Object Convergence
   Unique Solutions           Effect of Imperfect Knowledge of Beam Curvature
   How Much Curvature is Required 

No Support Convergence
Under conditions when multiple curvature datasets are used the beam curvature 
operators are a sufficient constraint and the finite support region operator can be 
discarded. When this is done convergence is only marginally slower (curves labelled 
with “NC” on the graph to the left) than when the finite support operator is retained 
(curves labelled with “C”) [2]. 

Large and Periodic Object Convergence
It follows that the sample need no longer be finite in size. Effectively the beam decay 
to zero apertures the sample in a way characteristic of a finite sample. This means 
that large, and more importantly, periodic objects may be reconstructed. For peri-
odic objects we have additionally shown that knowledge of the unit cell dimension 
allows a unique solution [2].

Sample and its reconstruction using multiple asymmetrically curved data sets. The 
convergence plot shows a typically rapid convergence. 
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Faster Convergence
The effect of encoding a reference phase 
onto different spatial locations on the 
sample appears to provide an additional 
positive feedback mechanism in the it-
erative procedure and produces faster 
convergence rates when obtaining a so-
lution [2]. Additional schemes which also 
speed up convergence include the use of 
multiple diffraction data sets under con-
ditions of different amounts of curvature 
in the illuminating illumination and the 
use of asymmetric curvature, such as 
pairs of orthogonally oriented cylindrical 
curvatures. Under these schemes addi-
tional operators are required in the itera-
tive scheme which add and subtract the 
effect of the various beam curvatures.   
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Curved beam illumination requires that additional operators,       , and its inverse, which add and subtract 
the effects of the beam curvature, be included. When multiple or asymmetric curvatures are used the 
operator corresponding to the appropriate curvature is used. In numerical tests the use of multiple 
(curves labelled with “5” for 5 different curvatures) and asymmetric curvatures (curves labelled with “A” 
for asymmetric) greatly enhances convergence time. The traditional plane wave approach (curve la-
belled “GS”)  has not deviated significantly from the top of the graph in the number of iterations shown.  
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Unique Solutions
In addition to the special case of periodic samples, we have shown that the use of asymmetric 
(sometimes called astigmatic) curvature will guarantee a unique solution is obtained [3]. This is 
true even in cases which are generally pathological for other phase retrieval methods. 

The optical vortex is characterised by a point singu-
larity about which a donut shaped intensity distri-
bution is seen (upper left plot) [4,5,6]. An integer 
multiple of a 2p phase ramp circulates about the 
singularity (next to upper left plot). The symmetry 
in the intensity is preserved on a reversal of the di-
rection of the phase ramp. Consequently, the plane 
wave method (shown in the top right pair of plots ) 
and the spherically curved beam method (as well 
as other phase retrieval methods) cannot recon-
struct the sign of the phase helicity [4]. Note the 
phase ramp is reversed. However, using asymmetric 
curvature introduces distortions in the measured 
intensity that relates to the helicity thus introduc-
ing information sufficient to retrieve the phase 
ramp direction (shown in the bottom right pair of 
plots). The characteristic speed of convergence is 
also retained as shown in the lower left plot.
An additional pathology arises for so-called homo-
metric objects. In this case a sample can be de-
scribed as the convolution of a basis with a kernel 

(left image), while its homometric pair is the convolution of the same basis with the 
spatially reversed conjugate of the kernel (right image). It is straightforward to show 
that such objects produce identical diffraction patterns (centre image). Accordingly, 
when the kernel is not conjugate-spatially symmetric we have a new class of object 
that is not “trivially” symmetric that cannot be solved by the standard methods of co-
herent diffractive imaging. Such objects need not be rare - one can envisage micro- or 
nano-fabricated samples that satisfy this criterion. We have shown that under asym-
metrically curved illumination the orthogonal distortions introduce additional infor-
mation that allow a unique solution to be obtained (our solutions are identical by eye 
to the images shown) [2].

How Much Curvature is Required?
While in general increasing curvature will improve convergence rates, we have 
demonstrated that the increase in convergence rate diminishes with increasing 
curvature, In any event, large curvatures are practically difficult to obtain. Nu-
merical simulations indicate that beyond a Fresnel number (corresponding to 
the number of cycles of 2p in phase curvature across the object) of about 5 
there is little practical improvement [1].

Number of iterations to convergence for 
two samples as a function of Fresnel 
number.

For multiple curvatures introduced by moving the source relative to the focus, 
there will be a constant difference between successive beam subtraction and 
beam addition operators. Where there are beam characterisation errors a constant 
correction factor can be found to obtain the correct difference and the resulting 
reconstruction should be affected qualitatively in the same way as for the single 
plane case.

The bottom three images show respectively the sample, its reconstruction and 
the convergence plot under the condition where there is a 1% error in the charac-
terisation of the Fresnel number of the illuminating beam. The top three images 
show the same information for the case of a 10% error. Very little discernable dif-
ference is observed for the 1% error case. For the 10% error case a good recon-
struction is still seen although some differences are now apparent. 

1 1 2ˆ ˆ ˆ ˆ ˆ ˆn n
o FM S FM S oT T T T T Tλ λ λ λε ε ε ε− − −=

1
0S

S
S

ε
∈

=
∉

r
r
( ) ( )2 2ˆ exp expr iT A r rλ µ µ= − −

( ) ( )1 2 21ˆ exp expr iT r r
Aλ µ µ− =

Conclusions
We are currently undertaking a range of experimental investigations in order 
to confirm our arguments and to investigate the practical difficulties of un-
dertaking coherent diffractive imaging using curved beam illumination.
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